
AD-A127 00D FRACTURE MECHANICS-APPL[ED TO F ASTOMERIC COMPOSITES
U) AKRON UNI VOH NS 0F P0LYMEN SCIENCE A N DENT
APR 83 TR-28 NODS 4-76-C 0408

ANCLASSIFED Frih

EEEENDEEE



ILO

1111 '*'*'o 1.8
1.ll 25 Il' f 1. 116

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A



0
aOFFICE OF NAVAL RESEARCH

o Contract N00014-76-C-0408

Project NR 092-555

Technical Report No. 28

FRACTURE MECHANICS APPLIED TO ELASTOMERIC COMPOSITES

by

A. N. Gent

Institute of Polymer Science
The University of Akron

Akron, Ohio 44325

April, 1983

Reproduction in whole or in part is permitted

for any purpose of the United States Government

Approved for Public Release; Distribution Unrestricted

DTICS. ELECTE
APR 18 1983 .

-.4

88 04 18 . 0D



SECuRIT CLASSIFICATION OF THIS PAGE* g3h. Dnto 3UIm04

REPORT DOCUMENTATION PAGE B r D WU'RR ucTIoNs
______________________________________ 3106 CO4PL.ETrWGFORM

I. REPORT NUMIEaf GOVT ACCESSION M. &* LCIPiENIT*S CATALOG NUMBER

Technical Report No. 28 op ".1;2 7? ,0
.TITLE 

r 
(and Sobate) . TYP o9F RE1PORT & PERIOD COVERED

Fracture Mechanics Applied to Elastomeric Technical Report
Composites I. PERFORMING ORG. REPORT NUMBER

7. AUTNOR(*) S. CONTRACT OR GRANT NUMBER(d)

NO0014- 76-C-0408~A. N. Gent

___S. PER1FORING oROAIZATION NAME AND ASORESS t. PRGA -- EMENr PROET, TASK

Institute of Polymer Science
The University of Akron NR 092-555Akron, Ohio 44325

I. CONTROI.LING OFFICE NAME AND AODRESS tL R&[OT DATE

Office of Naval Research April, 1983
Power Program 13. NUMBER OF PAGES

Arlington. VA 22217 25
I. MONITORING AGENCY NAME & AOORESS( Aiftot 101m0 COMIIMA 0) IS. SEr5CURITY CLASL. (of We IrPW)

Unclassified

IS. OCL ASSI FICATION/OOWN GRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of de Repmrt)

Approved for public release; distribution unrestricted.

I7. oISTRIIUTION STATEMENT (el Ie &6ow cit-md in &t4k 20, II dtI.r..l htm Rape)

IL SUPPLEMENTARY NOTES

Submitted for publication in: Rubber Chemistry and Technology

IS. KEY WORDS (COmW&. on so~" of" II .46.7 -mW iDdeS or leek -a-)

Adhesion, Composites, Debonding, Detachment, Elastomers, Fracture,
Peeling, Reinforcement, Rubber, Shear, Strength

20. A9PAT(mIe .waad le. d.f 7 block amA..o)
Griffith introduced a general fracture criterion in 1920: a crack will grow
nly when enough energy is available in the system to cause further fracture.
This simple concept has been applied to various tear processes in elastomeric
materials by Rivlin and Thomas and to a variety of adhesive failures by Kendall.
Their results are reviewed, with particular reference to the fracture and de-
bonding of elastomeric composites. Two further cases are then considered: th
detachment of an elastic matrix from a rigid spherical inclusion and the pull-
out of inextensible cords from an elastic block in which they are embedded.(--j

DD , PJH7 1473 EDITION O I NOV 6 IS OBSOLETE

S/N 0102- LF- 01 A- 6601 SECURITY CLASSIFICATION OF THIS PAGE (W#" Date Shtlod)

f , ~ -



Fracture Mechanics Applied to

Elastomeric Composites

A. N. Gent
Institute of Polymer Science

The University of Akron

Akron, Ohio 44325

Abstract

Griffith introduced a general fracture criterion in 1920: a crack

will grow only when enough energy is available in the system to cause

further fracture. This simple concept has been applied to various tear

processes in elastomeric materials by Rivlin and Thomas and to a variety

of adhesive failures by Kendall. Their results are reviewed, with

particular reference to the fracture and debonding of elastomeric com-

posites. Two further cases are then considered: the detachment of an

elastic matrix from a rigid spherical inclusion and the pull-out of

inextensible cords from an elastic block in which they are embedded.

Introduction

In general, the strength of an adhesively-bonded joint is a

function of the mode of loading and the dimensions and elastic properties

of the bonded components, as well as of the intrinsic strength of the

interface. The objective of fracture mechanics is to relate the breakinq

load to these diverse factors. One method of analysis uses a simple energy

criterion for fracture, in terms of a characteristic energy for breaking

apart the interface. Originally proposed by Griffith (1) for the brittle

fracture of elastic solids, an energy criterion for fracture has been success-
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fully applied to materials which become locally dissipative by Irwin (2) and

Orowan (3), to highly-elastic materials by Rivlin and Thomas (4), and to

the separation of two adhering solids by a number of authors (for example

(5-17) ).

An alternative method consists of evaluating the stresses set up at the

site of fracture, and then invoking a characteristic fracture stress as the

criterion for rupture (18). These two methods are fundamentally equivalent,

but energy calculations are often easier to perform. The energy method is

used here exclusively, for this reason.

In applying an energy criterion to adhesive failure, it is first

necessary to identify an initial zone of separation, usually a flaw or

region of high stress concentration at the interface between the two adher-

ing solids. Then, failure is assumed to take place by growth of this initial

debond until the joint is completely broken. An energy balance is formu-

lated for a small growth of the debond--changes in the strain energy of the

joint and the potential energy of the loading device are eauated to the

characteristic energy needed for debonding. This energy balance provides

the required relation between the breaking load, the properties of the two

adhering solids and the dimensions of the joint.

The fracture strength of a number of simple adhesive joints is now

discussed, using these concepts of fracture mechanics. In all cases it is

assumed, for simplicity, that one of the adherends is linearly elastic and

uniformly stressed and that the other is rigid and inextensible. Strain 0

Dist

By~.
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energy is supplied by a loading device and stored in the deformable material.

It is expended at failure in two ways: in supplying the work of fracture

or detachment and in deforming material which was previously undeformed. By

identifying the energy available to that required to propagate a fracture or

detached zone, the magnitude of the stored strain energy at the moment of

fracture is deduced, and hence the applied stress ab at break.

Relations obtained in this way for the failure load contain no adjust-

able parameters. Successful prediction of failure loads is therefore strong

evidence for the validity of the proposed failure criterion and of the sim-

plifying assumptions made in the analysis, viz., linearly elastic behavior

of the adherends and substantially homogeneous deformation of Darts of

each adherend. Moreover, the predicted failure loads may be used as the

basis for rational design of bonded components, once the basic assumptions

of the theory have been shown to hold. Also, simple test methods can be

developed for determining the characteristic strength of bonded interfaces

from the measured failure loads of suitable model joints. The analysis of

the pull-out force of cords embedded in rubber blocks (16) has been employed

in this way to measure the adhesion of tire cords to rubber (19).

Modes of Failure

Peeling separation.

The peel test is particularly simple to analyze because the elastic

energy of deformation of the adherends changes very little as peeling pro-

ceeds. This is because most adhering layers are sufficiently stiff that they
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do.ntstretch significantly under the force of peeling, and the amount of

material subjected to bending does not alter. Thus, for flexible but in-

extensible adherends the work of detachment is provided directly by the

loading device. Hence, for peeling at 900 (Figure la) the peel force P

per unit width is given by

P = Ga (1)

where Ga denotes the work of detachment per unit area of interface. For

peeling at 1800 (Figure lb)

P = Ga/ 2  (2)

The factor of 2 arises in this case because the point of loading moves

through twice the displacement of the detachment front.

Lap shear

When a deformable adhering layer is subjected to a force aoplied parallel

to the interface, Figure 2, then the layer becomes stretched after detach-

ment. For an increase Ac in the length of the detached portion, the

detached layer becomes stretched by an amount eAc where e is the tensile

strain in the already-detached layer. If the layer is assumed to be

linearly-elastic, with a tensile (Young's) modulus E. then e=P/Et, where

P is the applied tensile force per unit width of the layer and t is the

layer thickness. The loading device thus supplies energy given by

PweAc(=p 2wAc/Et). Some of this energy, wAc/2Et, is expended in stretching the

newly-detached length Ac to the tensile strain e. The remainder, P2w~c/2Et, is

expended in the detachment process itself and is thus equal to the work re-

quired for detachment, GawAc(.

__________________

* ~-
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Hence,

p = 2 t E Ga (3)

or, since b= P/t,

a2b 2EGa/t (4)

The above relation resembles Griffith's solution (1) for the tensile

breaking stress of a bar containing a small circular cavity of radius r.

ab2 = 7EGc/3r (5)

where Gc denotes the work required to propagate a fracture plane. However,

in Griffith's solution, as the

flaw grows and its radius increases, the stress required for fracture is

predicted to decrease. Thus, if the applied stress is large enough

to cause the (small) initial flaw to grow, it will then be more than suffi-

cient to make the process continue, so that tensile fracture is catastrophic.

On the other hand, equation 4 does not contain the size of the debonded zone.

Shearing detachment is therefore predicted to take place continuously at

a constant tensile stress in the deformable layer related inversely to its

thickness. These features of shearing detachment have been verified ex-

perimentally for adhering elastomeric layers 04 and the theory has been

extended to deal with short overlaps (when bending deformations become

important) (l, with unequal adherends (l, and with prestressed layers

(2c. In all cases, the success of a simple energy criterion for detachment

confirms its general validity.

______________________________________________ _________ I
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Tensile detachment from a rigid plane

For a circular debonded patch at the interface between a half-space

of an elastic material and a rigid substrate, Figure 3, the relation

corresponding to equation 5 for the applied stress ab sufficient to cause

growth of the debond is (20

ab 21EGa/3r (6)

The same result is obtained for a pressurized debond (a "bllster")of

radius r at the interface between an elastic half-space and a rigid

plane (24. If the adhering material is incompressible in bulk, as is

assumed here, then a tensile stress b applied at infinity is mechani-

cally equivalent to a pressure ab applied to the inner surfaces of the

debonded region.

Detachment from a spherical inclusion

A relation analogous to equation 6 has been deduced for the applied

stress required to cause detachment of an elastic matrix from a rigid

spherical inclusion, Figure 4. The relation obtained then is (15)

ab2 = 41EGa/3r sin 2e, (7)

where r now denotes the radius of the inclusion and 29 denotes the

angle subtended by an initially-debonded patch located in

the most favorable position for growth, i.e., in the direction of the

applied tensile stress, Figure 4.

It is clear thatoI will be extremely large for inclusions of small

radius r, even if the level of adhesion, represented by Ga, is relatively



small, only of the order of magnitude of Van der Waal's attractions.

For example, when E is assumed to be 2 MPa, representative of soft

elastomers, and Ga is given the relatively low value of 10 J/m2, then

the critical applied stress for detachment is predicted to reach a

magnitude similar to E when the radius of the inclusion is about 20 .m,

even if the initially-debonded zone is as large as is feasible, 9 = 450.

Now, a triaxial tension or negative hydrostatic pressure of magnitude

2a is set up in the immediate vicinity of a rigid spherical inclusion,

at the two poles in the direction of applied tensile stress a. Any

small voids present within the adhesive in these regions will grow in

a catastrophic way by rupture of the adhesive when the material around

them is subjected to a triaxial tension exceeding a critical level,

given approximately by E + (2 S/a) where S is the surface energy of the

adhesive and a is the initial radius of the void p3). The condition

for catastrophic growth of pre-existing voids is, therefore:

a = *E + (S/a). (8)

Thus, instead of detaching from the inclusion the adhesive itself

will fail by cavitation when the inclusion is small in size because the

critical stress for growth of cavities, given by equation 8, will be

reached before the critical stress for debonding, given by equation 7.

The smallest inclusion for which detachment will take place is given

by
r = 61TGa/ 3E

on putting 9= 450 in equation 7 and S =0 in equation 8.

Ih
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The second term in equation 8 cannot be ignored, however, when

the inclusion is extremely small, because voids located within the immediate

vicinity of an inclusion must be small in size in comparison with the

inclusion itself. Thus, when the inclusion radius r is reduced, the

radius a of a suitably located void is necessarily smaller, and growth

of it by tearing will require an increasingly-large applied stress. When

reasonable values are assigned to E and S, it may be concluded that

growth of local voids by tearing will become increasingly difficult as

the particle diameter is reduced below about 50 w~n and when it is less

than about 1 pim then tearing failures in the vicinity become virtually

impossible also. The matrix will then be effectively bonded to the

inclusion under all circumstances. These considerations appear to account

for the general features of reinforcement of elastomers by particulate

fillers (15).

Pull-out of inextensible fibers

By applying the same principle of energy conservation during detach-

ment, it can be shown that the pull-out force P for an inextensible

fiber of radius r embedded in a cylindrical elastic block of radius R

is given by (16):

p2 = 412R2rEGa- (9)

A sketch of this experimental arrangement is given in Figure 5a. When

a bonded elastic cylinder of radius r is pulled out from a cylindrical

cavity of the same radius, Figure 5b, then the pull-out force is also

given by equation 9 in the special fom (17):

P2 . 47r2r3E Ga" (10)

.1- _
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Experimental results with rubber cylinders have confirmed the general

validity of equations 9 and 10, and measurements of failure loads in

compression and torsion have also been successfully analyzed in the

same way ( 17 ). Thus, again, energy considerations account for the

principal features of the strength of simple joints.

It is noteworthy that equations 9 and 10 predict increasing pull-

out forces as the radius of the inclusion (fiber) is increased. This

trend is in striking contrast to the result for a single spherical

inclusion, equations 7 and 8, where the detachment stress is predicted

to decrease as the radius of the inclusion is increased. Both trends

are direct consequences of the theoretical analysis, and both are con-

firmed by experiment (16,24). The surface area to be debonded and the

energy required to do so are both greater for fibers of larger diameter

and, as a result, the pull-out force is increased. For spherical

inclusions, on the other hand, the amount of highly-stressed material

in the vicinity of the debond, which provides the energy needed for

propagating the debond in this case, also increases as the size of the

inclusion is increased. Indeed, the highly-stressed volume grows in

proportion to r3 whereas the area to be debonded only grows in proportion

to r2 . In consequence, it is easier to propagate a debond on a larger

inclusion than it is on a smaller one.

All highly-elastic materials tend to contract on stretching. When

an embedded fiber is pulled out, the surrounding material contracts

on to it when the pull-out force is applied, and it becomes gripped by

friction as well as by adhesion. When the work of frictional sliding
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is added to the work of debonding the pull-out force is obtained as (17).

p = 4n2R2rEGa /l-4rvx/3R2 ]  (1i)

in place of equation 9, where R denotes the coefficient of friction and x

denotes the length of fiber embedded in the block of elastomer. In both

equation 9 and 11, it has been assumed that the radius R of the elastic

block is much larger than the radius r of the fiber.

It is clear from equation 11 that the pull-out force P will rise

to extremely high values when the fiber is embedded deeply enough so that

the second term in the denominator approaches unity. Although the

theoretical treatment leading to equation 11 is rather approximate, it

accounts for the general nature of the experimental observations and,

in particular, for the greater influence of friction for fibers or embedded

cylinders of larger diameter (17).

When a number n of fibers are embedded in a single block of elastomer

and they are all pulled out together, then the work required for detach-

ment is obviously larger than for a single fiber by a factor of n. The

strain energy stored within the block must therefore be larger than before,

by a factor of n, and the total force applied for pull-out must be increased

by a factor of n . Thus, energy considerations lead immediately to the

surprising conclusion that the total force required to pull out n fibers

simultaneously from a single elastic block will increase in proportion

to n . This prediction has been verified experimentally for 1-10 cords

embedded in a rubber block, Figure 6 (16). It provides a striking

example of the success of simple energy calculations in accounting for

important features of the strength of joints and structures.
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Figure I. Peel Tests
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w unstrained region

Figure 2. Detachment by a Force Parallel to the Interface
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Figure 3. Detachelt by a Tensile Stress
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Figure 4. Detachvnent from a Rigid Spherical Inclusion
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